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Several eukaryotes, including maize, yeast and Xenopus, are
degenerate polyploids formed by relatively recent whole-genome
duplications. Ohno’s conjecture that more ancient genome
duplications occurred in an ancestor of vertebrates is probably
at least partly true but the present shortage of gene sequence
and map information from vertebrates makes it difficult to either
prove or disprove this hypothesis. Candidate paralogous
segments in mammalian genomes have been identified but the
lack of statistical rigour means that many of the proposals in the
literature are probably artefacts.
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Abbreviations
BLAST basic local alignment search tool
EST expressed sequence tag
HSA human chromosome
Mya million years ago
NR nuclear receptor

Introduction
Ohno’s hypothesis that multiple genome duplications
occurred in an ancestor of vertebrates [1,2] has been
enduringly popular with scientists even though many of
the original premises behind his proposal have turned out
to be incorrect. For example, his arguments about genome
size differences were made before junk DNA was discov-
ered, and the first pair of regions in the human genome
proposed to be a duplicated chromosomal segment seem,
ironically, to have been caused by an error in the genetic
map. (Ohno [2] noted that the LDHA [lactate dehydroge-
nase] and GPTC [glutamate pyruvate transaminase]
genes were mapped to human chromosome 11 [HSA11]
whereas their homologues LDHB and GPTB were
mapped to HSA12. The GPT data was in error; there is
only one GPT gene, and it is on HSA8.) Despite the grow-
ing tendency to refer to whole-genome duplications in
vertebrates as fact [3,4], the data remain severely limited
and Ohno’s idea remains an hypothesis. In this review, we
examine the evidence that genome duplications have
indeed occurred during the evolution of all eukaryotes,
including vertebrates.

Lessons from non-vertebrates
The strongest evidence for genome duplications comes
not from vertebrates but from yeast and maize.
In yeast, 55 duplicated chromosomal regions account for
half the genome [5–7]. Duplicated genes in these regions

have conserved gene order and orientation but they are
outnumbered by unique (non-duplicated) genes located
between them. The unique genes must originally have
been duplicated along with the rest of the genome, but one
copy was subsequently deleted.

A similar degenerate tetraploid structure in the maize
genome was first recognised by Helentjaris et al. [8] and
Ahn and Tanksley [9]. The entire genome can be sorted
into paired regions on the basis of the conserved order of
duplicate genes [10,11•,12]. Recent results from the
Arabidopsis thaliana genome sequencing project indicate
unexpectedly that it, too, has substantial regional duplica-
tions (S Rounsley, personal communication; [13]).

Neither yeast nor maize contains entire duplicated chro-
mosomes. Instead, they have multiple non-overlapping
duplicated regions, which indicates that numerous chro-
mosomal rearrangements occurred after genome
duplication [11•,14]. In yeast, most of the major
rearrangements were reciprocal translocations. If a single
duplication of the whole genome occurred, it might be
expected that molecular clock analyses of different gene
pairs should all converge on a single estimate of the date
of the duplication; however, date estimates from both
yeast [5] and maize [15••] are quite heterogeneous,
which could be explained by either gene conversion or
segmental allotetraploidy. (A segmental allotetraploid is
an organism where parts of the genome are allotetrapoid
and the rest is autotetraploid [15••].)

Yeast and maize satisfy three criteria for proof that they
have duplicated genomes: conserved gene order in
paired chromosomal regions; these regions are non-over-
lapping; and phylogenetic support for a 2:1 orthology
relationship with an outgroup. In yeast, a fourth criterion
is met: an outgroup species whose gene order for unique
genes is similar to that of the inferred pre-duplication
genome [16]. Lack of genome sequence data means that
this fourth test cannot yet be applied to maize.

Fates and functions of duplicated genes
In yeast, ~8% of the original gene set were retained in
duplicate and the other 92% returned to a single-copy
state [14]. This is at odds with theoretical predictions that
if a species has a large effective population size (as does
yeast; [17]) most duplicate genes should gain new func-
tions and not become pseudogenes [18–20]. The 8% figure
also contrasts with retention estimates of 72% for maize [9]
and ~50% for recent tetraploidies in fish and
Xenopus [18,21]. Does this reflect some biological differ-
ence, or is there an ascertainment bias caused by the
different methods — complete sequence analysis, cDNA
hybridisation, or isozyme studies — used to produce the
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estimates? One obvious biological difference is unicellular-
ity in yeast versus multicellularity in the other species.
Cooke and co-workers [22•,23•] have noted that several
genes important in mammalian development have no phe-
notype when knocked out in mouse, proposing that there
must be selective pressure to maintain redundancy of
developmental genes. This has been disputed by Gibson
and Spring [24•] who argue that it may simply be harder to
get rid of duplicated multidomain proteins (e.g. develop-
mental proteins) than duplicated single-domain proteins
(e.g. metabolic enzymes). Gibson and Spring’s hypothesis
is supported by Iwabe et al. [25], who found that different
functional classes of genes have been duplicated to differ-
ing degrees during vertebrate evolution.

What has been proposed for vertebrates?
Different proposals have been made concerning the num-
ber and timing of genome duplications during vertebrate
evolution (Figure 1). In his classic book [1], Ohno did not
make an explicit hypothesis but instead proposed one
duplication after the divergence of tunicates, followed by
one or two others some time between the lamprey and

amphibian divergences. More recent proposals, including
one by Ohno himself [26], have made more precise state-
ments and the most common model — influenced largely
by studies on the Hox gene clusters — proposes two dupli-
cations: one on either side of the jawless fish divergence
(~500 and 430 million years ago [Mya]; Figure 1).

Gene number arguments
The most straightforward argument for vertebrate genome
duplications comes from the analysis of gene numbers in
different species. Drosophila and Caenorhabditis
have ~12,000 and 16,000 genes respectively. An elegant
analysis [27••] estimates a similar gene number
(15,000 ± 3,700) for the sea squirt Ciona intestinalis, a tuni-
cate (Figure 1). Humans are estimated by expressed
sequence tag (EST) analysis to have ~70,000 (± 20,000)
genes [28]. The approximate fourfold ratio between these
numbers is consistent with two rounds of polyploidy in ver-
tebrates, although the human estimate is quite uncertain
and the ratio between human and Drosophila could be as
high as eightfold. This sort of arithmetic makes no
allowance for gene deletion during diploidisation, however.

Figure 1
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Summary of proposals for the timing of duplication events in the
vertebrate lineage. Species divergences are drawn schematically, not to
scale. Shaded boxes indicate each proposed genome duplication and
are drawn at the centre of possible time ranges (Mya). The hatched box
indicates a proposed wave of multiple tandem gene duplications. Data
from references [1,20,26,29,34,37,42,53]. Ohno [1] postulated
tetraploidisation at the divergence of fish and/or amphibians, shown by

the two boxes connected by a dotted line. The circle at ~500 Mya
denotes the origin of vertebrates. Other proposals not shown here
include suggestions that an additional (chromosomal or whole genome)
duplication may have occurred in the zebrafish lineage after its
divergence from the lineage leading to mammals [47••,49], or
conversely that the most recent duplication in the mammalian lineage
might have occurred after its divergence from bony fish [54].



To paraphrase HL Mencken, for every problem there is an
explanation that is neat, plausible, and wrong.

1:4 relationships
Spring [29] and Sidow [20] have observed that many sin-
gle-copy Drosophila genes have four vertebrate
orthologues and have proposed that this is consistent with
two rounds of genome duplication in vertebrates.
Apparent 1:3, 1:2 or 1:1 relationships between Drosophila
and human were attributed to either gene deletion or
inadequate sampling from human. Genes giving 1:5 or
higher ratios were predicted to be paralogous mixtures
that should resolve (given complete data) into 2:8
ratios [29]. But the difference in gene numbers between
these species, and the dictum that new genes are always
made by duplication, mean that almost no other result is
possible. There must, on average, be about four human
homologues for every Drosophila gene. Whereas two
rounds of complete genome duplication would give
1:4 ratios for every gene, a simple computer simulation
shows that even if 20,000 Drosophila genes were associat-
ed completely at random with 80,000 human genes, 60%
of them would be in 1:2, 1:3 or 1:4 ratios.

Phylogenetic trees can be used to test the significance of
the observed 1:4 relationships. If two rounds of genome

duplication occurred, a tree for four vertebrate
sequences and an outgroup should have the topology
(outgroup [(1,2)(3,4)]), where the first genome duplica-
tion produced the common ancestors of sequences 1/2
and 3/4, and these two lineages later split simultaneous-
ly in the second genome duplication [29]. Such a tree has
two testable characteristics: a ‘2+2’ topology, and equal
ages for the two later divergences, but few attempts have
been made to examine these for candidate genes.

The difficulty in interpreting phylogenetic data for com-
plex gene families is illustrated by two recent studies on a
single data set. Baker [30] analysed steroid hormone
receptors, which form part of the nuclear receptor (NR)
superfamily analysed independently by Escriva et al. [31].
Both groups concluded that they had identified two
rounds of gene duplication in their trees. Baker’s two
rounds were those giving rise to a 2+2 topology for the
androgen, progesterone, glucocorticoid and mineralcorti-
coid receptors, both ~450 Mya. Escriva et al. instead
regarded these events as a single ‘wave’ of duplications
and proposed that there was also a much earlier ‘wave’,
before the Hydra divergence >700 Mya, which created the
six NR subfamilies (of which the steroid hormone recep-
tors are one). Despite the differences, both groups stated
that their results support Ohno’s hypothesis.
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Figure 2

Above diagonal (bottom left to top right):
human chromosome pairs that have been
proposed to contain duplicated regions. H,
Hox regions [43]; M, MHC regions [36,37];
F, FGFR regions [51]; N, Nadeau [55];
C, Comings [32]; L, Lundin [34];
S, Spring [29]. Below diagonal: dot-matrix
summary of TBLASTX [56] search results.
Human sequence pairs with significant
similarity are plotted at the rank-order
positions of the sequences on a physical
map of chromosomes. The dataset — 13,403
mapped sequences including EST clusters,
cDNAs, and genomic DNAs — was
downloaded from the Genomes Division of
National Center for Biotechnology
Information (NCBI) Entrez Database [57] in
December 1997. The criteria for similarity
were a TBLASTX score of 200
(BLOSUM62 matrix), a minimum sequence
overlap length of 200 bp, and an excess of
synonymous nucleotide substitutions.
Sequences were pre-filtered to remove
repeats using DUST [58] for low-complexity
regions and XBLAST [59] with the
REPBASE database [60] for repetitive
elements. Long sequences were broken into
20 kb fragments before searching.
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Candidate duplicate or quadruplicate regions
In 1972, Comings [32] classified the human chromosomes
into 11 pairs on the basis of cytological similarities but this
work must be questioned because of the extent of
rearrangement now known to exist between human and
mouse [33]. Some of Coming’s pairs, such as
HSA11/HSA12 and HSA4/HSA5, are still often cited.
Lundin [34] and Spring [29] listed numerous duplicated,
triplicated or quadruplicated regions each containing sev-
eral genes. Nadeau and Sankoff [4] analysed a set of
hundreds of duplicate genes in human and mouse that
they took to be derived from genome duplications but they
did not identify the genes.

The sheer number and remarkable diversity of chromo-
some pairs that have been proposed for humans makes it
unlikely that most of them can be correct. Of the 231 pos-
sible pairs that can be made from 22 autosomes, at
least 66 (29%) have been proposed to contain ancient par-
alogous segments (Figure 2). Many of these proposals have
been made on the strength of no more than two or three
similar genes being located on the two chromosomes. This
is clearly insufficient, given that an average human chro-
mosome may contain 4000 genes. By performing BLAST
(basic local alignment search tool) searches among all DNA
sequences that appear on the physical map of human chro-
mosomes, we find at least three pairs of similar sequences
on 48 of the 231 possible autosome combinations, includ-
ing 25 new ones (Figure 2). Thus it would be possible,
using the criteria commonly used in the literature, to pro-
pose dozens more ancient paralogous regions. For
example, HSA3 and HSA10 have not been proposed to be
related to each other but they contain four hits with con-
served gene order: hormone receptors (GenBank accession
numbers L31785 and X68167), ribonucleoproteins
(R39545 and AA088775), zinc finger proteins (U69645 and
L04282), and protein kinases (L18964 and L01087).

Clearly, more stringent criteria are needed to distinguish
genuine polyploidy-derived duplicate regions from arte-
facts. The only study so far that has adopted a statistical
approach to its findings has been that of Ruddle et al. [35],
who concluded that the HSA 2/7/12/17 relationship was
highly significant. Similar approaches need to be taken
with other candidate regions.

Three potentially quadruplicated regions the MHC, Hox
and FGFR regions — in mammals — have been analysed
in detail: these are now discussed.

The HSA 1/6/9/19 (MHC) regions
Katsanis et al. [36] and Kasahara et al. [37,38] independently
identified genes near the MHC region on HSA6 that had
homologues on three other chromosomes. They proposed
two rounds of chromosomal duplication events and suggest-
ed that these may have been part of one or two
genome-wide duplications (Figure 1). The hypothesis that
the genes duplicated simultaneously was recently examined

critically by Endo et al. [39••] and Hughes [40••]. Their phy-
logenetic analyses showed that, out of the 11 gene pairs that
had been proposed on HSA6/HSA9, six may have had a
simultaneous origin. This makes a block duplication the
most parsimonious explanation of the data for these six gene
pairs, even though simultaneous duplication of all 11 pairs
could be resoundingly rejected. For three of the six gene
pairs there is a third copy on HSA1q21-25 which in each
case is slightly more closely related to the HSA9 paralogue
than to the HSA6 paralogue [36,40••].

The HSA 2/7/12/17 (Hox) regions
Although the Hox regions — including nearby genes such
as Wnt and Dlx — are probably the most-cited example of
genes whose organisation supports the hypothesis of two
rounds of genome duplication in vertebrates [41,42], in
the past year it has become clear that the explanation may
be more complex. Bailey et al. [43] have analysed
sequence data from collagen genes linked to the Hox clus-
ters, in conjunction with the Hox sequences themselves.
Instead of the 2+2 topology expected for a model with
1→2→4 Hox clusters, they found strong bootstrap support
for a tree where the HoxD cluster branched off first from
the ancestral lineage, followed by HoxA, and finally
HoxB/C. This requires three separate duplication steps.
As mammals have only four Hox clusters, not eight, either
some of these three steps were regional (not whole-
genome) duplications, or else some Hox clusters were
later deleted during mammalian evolution. An intermedi-
ate number of three clusters in lamprey seems to uphold
the former view [44] and the hypothesis is testable
because sequences from lamprey should contain ortho-
logues of Hox clusters D, A and a B/C ancestor.

As with mammals, the pufferfish Fugu has four Hox clus-
ters. Three of these correspond to the mammalian Hox A,
B and C clusters but the fourth is so unlike mammalian
HoxD that Aparicio et al. [45] were unable to tell if they
were orthologues. They speculated that an ancestor of
Fugu might have had more than four Hox clusters, with
Fugu having lost HoxD completely. This is supported by
the discovery that the zebrafish has at least five or six Hox
clusters [46,47••]. Whether these extra clusters represent
duplications that are zebrafish-specific, teleost-specific, or
common to the ancestor of all vertebrates (but later delet-
ed in mammals) is unknown [45,47••,48,49].

The recent discovery of the “ParaHox” cluster in amphioxus
points to an even older duplication [50••]. Gene order,
expression patterns, and phylogenetic analysis all indicate
that ParaHox is a duplicate of a primordial Hox cluster, which
arose in an ancestor of amphioxus and vertebrates.

The HSA 4/5/8/10 (FGFR) regions
A third possible example of a quadruplicated region was
described recently by Pébusque et al. [51]. This is centred
on four fibroblast growth receptor genes that are near
adrenergic receptor genes on human chromosomes 4p16,

Eukaryote genome dupication — where’s the evidence? Skrabanek and Wolfe    697



698 Genomes and evolution

5q33-35, 8p12-21 and 10q24-26. Additional genes allow the
region to be extended, most impressively for the
HSA8/HSA10 pair which includes seven loci. Where data
are available, phylogenetic analysis indicates a 1:4 relation-
ship between invertebrate and mammalian sequences for
these genes. Pébusque et al. argue that these duplicated
genes arose before the bony fish divergence but they did
not use molecular clocks to estimate dates for each gene.

Conclusions
Take four, or maybe eight, decks of 52 playing cards.
Shuffle them all together and then throw some cards
away. Pick 20 cards at random and drop the rest on the
floor. Give the 20 cards to some evolutionary biologists
and ask them to figure out what you’ve done. For
encouragement, tell them they can have the cards on the
floor in 2005 [52•].

Whole-genome duplication via polyploidy has undoubt-
edly occurred relatively recently in representatives of
three major eukaryote kingdoms: maize, yeast, Xenopus
and some fish. Parsimony therefore says that genome
duplication probably occurred several times in the evolu-
tion of all eukaryotic lineages, including our own, but
traces of these events may be hard to detect. Because of
the paucity of available map and sequence data, it is pre-
mature to reach any conclusion about Ohno’s original
hypothesis for vertebrates [1].

A particularly acute problem is that we do not really know
what we are looking for and it appears to be only too easy to
adapt the hypothesis to fit any data [40••]. Polyploid
genomes decay back to diploidy, eventually leaving only a
larger proteome and perhaps a few fragments of conserved
gene order as evidence that anything special has happened.
Without knowledge of the number of genome duplication
events that happened, and the relative rates of process-
es — such as gene deletion and transposition — that
obscure the evidence for duplication, building statistical
models with which to evaluate candidate duplicated
regions will be a challenge to bioinformatics.
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