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a b s t r a c t

Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and
pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are
often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal
genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict
clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog
putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized
clusters from six fungal species showed that SMURF accurately recovered all clusters and detected addi-
tional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and
variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs.
Further genetics studies are needed to experimentally confirm these clusters.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Secondary metabolites (SMs) are small bioactive molecules pro-
duced by many organisms including bacteria, plants and fungi.
These compounds are particularly abundant in soil-dwelling fila-
mentous fungi, which exist as multicellular communities compet-
ing with each other for nutrients, minerals and water (Keller et al.,
2005). Unlike primary metabolites, most SMs – as their name sug-
gests – are not essential for fungal growth, development, or repro-
duction under in vitro conditions. They can however provide
protection against various environmental stresses and during
antagonistic interactions with other soil inhabitants or a eukary-
otic host. Scientific appreciation of the importance of fungal SMs
grew in the 1940s as the massive impact of penicillin on human
health began to be seen. Since then, many other beneficial SM com-
pounds have been discovered including immunosuppressants, cho-
lesterol-lowering drugs, antiviral drugs, and anti-tumor drugs (for
a recent review see Hoffmeister and Keller, 2007). At the same
time, fungi are also known to produce numerous mycotoxins such
as aflatoxin, fumonisin, trichothecene, and zearalone.
ll rights reserved.
The first committed step in biosynthesis of an SM is catalyzed
by one of five proteins, which we refer to here as ‘‘backbone” en-
zymes. They include nonribosomal peptide synthases (NRPSs),
polyketide synthases (PKSs), hybrid NRPS–PKS enzymes, pren-
yltransferases (DMATSs), and terpene cyclases (TCs). These multi-
domain enzymes are associated, respectively, with production of
the five classes of SM: nonribosomal peptides, polyketides,
NRPS–PKS hybrids, indole alkaloids, and terpenes (Hoffmeister
and Keller, 2007). Terpenes, which are composed of isoprene units,
are not considered further in our analysis, because terpene cyclases
are highly variable in sequence and difficult to detect by bioinfor-
matic methods (Keller et al., 2005; Townsend, 1997). Intermediate
products formed by the backbone enzymes can undergo further
modifications catalyzed by ‘‘decorating” enzymes. The final prod-
uct is then often steered by a transporter outside the fungal cell
wall or sometimes remains within the cell. All these genes tend
to be found in contiguous gene clusters, which are coordinately
regulated by a specific Zn2Cys6 transcription factor and/or by the
global regulator of secondary metabolism, putative methyltrans-
ferase LaeA (Keller and Hohn, 1997; Keller et al., 2005).

The availability of data from fungal genome sequencing projects
has facilitated the discovery and characterization of new com-
pounds and their biosynthetic pathways. Thus within months after
completion of the first A. fumigatus genome (Nierman et al., 2005),
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several secondary metabolite clusters were characterized at the
molecular level including the gliotoxin (Gardiner and Howlett,
2005), fumigaclavines (Coyle and Panaccione, 2005; Unsold and
Li, 2005; Unsold and Li, 2006), fumitremorgin (Maiya et al.,
2006), and siderophores (Reiber et al., 2005) biosynthesis clusters.
Genome sequencing also revealed that the number of secondary
metabolites characterized from a given species falls far behind
the numbers of clusters that can be predicted based on its genomic
sequence (Bok et al., 2006; Chiang et al., 2008). This has been
attributed to the fact that not all clusters may be expressed under
normal laboratory conditions.

Despite the medical and agricultural importance of fungal SMs,
most putative SM clusters in fungal genomes have been predicted
by ad hoc strategies based on manual reviews of BLAST searches
generated for backbone genes and their neighbors (e.g. Nierman
et al., 2005). Manual annotation of SM clusters, however, is time-
consuming and may result in inconsistent annotation.

To facilitate systematic mapping of SM clusters in fungal gen-
omes, we developed a web-based software tool, Secondary Metab-
olite Unknown Regions Finder (SMURF; www.jcvi.org/smurf/). It is
based on three hallmarks of fungal SM biosynthetic pathways: (i)
the presence of backbone genes, (ii) clustering, and (iii) character-
istic protein domain content. Subsequent analyses of the predicted
clusters present in 27 sequenced fungal genomes (Supplementary
Table 1) shows SM gene enrichment in the genus Aspergillus, the
absence of the clusters in unicellular fungi, and unexpected abun-
dance and variability of the fungal clusters. Our results are also
consistent with the view that SM profiles can be used as means
of differentiating species and strains in filamentous fungi (Frisvad
et al., 2008), and show that gene duplication plays an essential role
in the creation and expansion of the SM repertoires of fungi.
2. Methods

2.1. Identification of putative backbone enzymes

SMURF relies on hidden Markov model (HMM) searches to de-
tect backbone genes in sequenced fungal genomes. The HMMER
program (http://hmmer.janelia.org) was used to search for con-
served Pfam and TIGRFAM domains of backbone enzymes in the
protein set of each sequenced species. Trusted threshold bit score
cutoffs (predefined in HMMER) were used for each HMM search.
NRPS enzymes were identified as enzymes with at least one mod-
ule composed of an amino acid adenylation domain (A), a thiola-
tion domain (PCP) and a condensation domain (C). PKS enzymes
were identified as enzymes with at least one acyl transferase do-
main (AT), a beta-ketoacyl synthase C-terminal domain (BKS-C),
and a beta-ketoacyl synthase N-terminal domain (BKS-N). Hybrid
PKS–NRPS enzymes were identified as enzymes with at least one
instance from each set of three domains listed above.

NRPS-like enzymes were identified with a combination of at
least two domains from any of those in the NRPS enzyme module;
or a combination of an A domain and a NAD_binding_4 domain; or
a combination of an A domain and short chain dehydrogenase do-
main. PKS-like enzymes were identified with a combination of at
least two domains from any of those in the PKS enzyme module.
To eliminate false positives among PKS-like enzymes, they were
defined as proteins with AT, BKS-C and BKS-N domains that scored
below a trusted HMM cut-off. In contrast, to eliminate false posi-
tives such as alpha-aminoadipate reductase among NRPSs, we re-
quired the score of the C-terminal domain of L-aminoadipate-
semialdehyde dehydrogenase alpha subunit to be above the cut-
off.

Prenyltransferase enzymes were identified as enzymes with at
least one DMATS-type prenyltransferase domain (DMATS). The
corresponding de novo HMM model for this domain (TIGR03429)
was created in this study from the seed alignment generated using
the A. fumigatus dimethylallyl tryptophan synthase FtmPT2 as a
seed sequence as previously described (Sonnhammer et al.,
1998). Characterized or partially characterized seed members in-
clude several dimethylallyltryptophan synthases, a brevianamide
F prenyltransferase, the LtxC enzyme involved in lyngbyatoxin bio-
synthesis, and a probable dimethylallyl tyrosine synthase.
2.2. Identification of putative decorating enzymes

To define protein domains commonly present in SM decorating
enzymes, transporter, and transcriptional regulators; we examined
the domains detected in the 22 A. fumigatus clusters we used as a
training set. The list of clusters included two genetically character-
ized A. fumigatus clusters involved in biosynthesis of fumitremor-
gin (Grundmann et al., 2008; Kato et al., 2009; Maiya et al.,
2006) and melanin (Fujii et al., 2004; Tsai et al., 1999) and 10 clus-
ters predicted based on expression data: A. fumigatus clusters Pes1,
siderophore, fumigaclavine, pseurotin, the gliotoxin-like polyke-
tide (McDonagh et al., 2008; Perrin et al., 2007), and gliotoxin
(Gardiner and Howlett, 2005). The rest of the 22 clusters were pre-
dicted manually based on genes’ name and their proximity to the
adjacent backbone gene (Perrin et al., 2007). Some domains were
present almost exclusively in clusters, while others were evenly
distributed throughout the entire genome (Supplementary Table 2).
The final 27 SM-defining domains were selected as domains most
likely to be found in a cluster based on their distribution.
2.3. Identification of putative SM clusters

Once all putative backbone genes are identified in a genome,
the SMURF algorithm then evaluates their adjacent genes to test
whether they are part of an SM gene cluster (Supplementary
Fig. 1). A window of ±20 genes on each side of a backbone gene
is scanned for the 27 SM-defining domains using HMMer. The
number 20 was established empirically based on the training set
of 22 A. fumigatus clusters. Genes in the window are tagged as
‘‘SM domain positive” if they contain at least one of these domains,
or ‘‘SM domain negative” if they do not. Then the boundaries of any
putative cluster are defined by the algorithm that evaluates each
gene by walking rightwards from the backbone gene until it
reaches as a stop signal, which is defined below. The last gene on
the rightwards walk before the stop signal is given the label alpha.
After that SMURF carries out an identical walk leftwards from the
backbone gene, until a stop signal is encountered defining a left-
limit gene beta. The interval between alpha and beta is the preli-
minary extent of the cluster.

The algorithm requires two key parameters: d, the maximum
intergenic distance (in base pairs) permitted between two adjacent
genes in the same cluster; and y, the maximum number of SM do-
main negative genes, which is allowed within a cluster. By a trial-
and-error process, we identified the parameters d = 3814 bp and
y = 10 genes as optimal based on the training set of 22 clusters. A
stop signal is defined as either an intergenic distance that is larger
than the limit d, or a cumulative number of negative genes be-
tween the backbone gene and the current position that is larger
than y (Supplementary Fig. 1).

To take into account the intergenic distances, the SMURF algo-
rithm trims each cluster to ensure that the interval between alpha
and beta is less than y. Then, additional genes are trimmed at both
ends of the cluster until the algorithm reaches the first backbone or
SM domain positive gene on each side. In some instances, SMURF
predicts overlapping clusters, in which case the two clusters are
merged into one.

http://www.jcvi.org/smurf/
http://hmmer.janelia.org
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3. Results

3.1. Parameter optimization

SMURF predicts putative secondary metabolism clusters by
using an algorithm that takes into account the domain content
of putative ‘‘backbone” genes and adjacent ‘‘decorating” genes.
One of the key challenges in developing this tool was identifica-
tion of the adjacent genes. In choosing parameters for SMURF
we were confronted with the dilemma of striking a balance be-
tween levels of under-prediction and over-prediction. We chose
to favor the latter, because over-prediction is easier to address
in the future once a more comprehensive training set becomes
available.

Our underlying hypothesis was that some domains may be dis-
proportionately present in SM clusters. To select these domains,
we considered clusters that have been identified either by standard
genetic methods or by transcriptional profiling of the A. fumigatus
DlaeA strain (Perrin et al., 2007). We thus identified 27 SM-defin-
ing domains over-represented in clusters (Supplementary Table 2).
For most of the domains, one or more corresponding domain mod-
els already existed in the PFAM (Mistry and Finn, 2007) or TIGR-
FAM (Selengut et al., 2007) databases; and we built a new model
for the N-methyltransferase domain (TIGR03439). Genes contain-
ing at least one of these 27 domains were called SM domain
positive.

3.2. Specificity and sensitivity

After parameter optimization with the training set, we com-
pared SMURF output against eight A. fumigatus Af293 clusters
and 10 clusters from other species that were all experimentally
linked to a secondary metabolite product (Supplementary Table 3).
The ten clusters from other species encoded the following metab-
olites: Aspergillus nidulans sterigmatocystin (Brown et al., 1996),
penicillin (reviewed in (Brakhage et al., 2005)), asperfuranone
(Chiang et al., 2009), asperthecin (Szewczyk et al., 2008), and ter-
requinone (Bouhired et al., 2007); Aspergillus flavus aflatoxin (Yu
et al., 2007); and aflatrem (Zhang et al., 2004); Penicillin chrysoge-
num penicillin (Smith et al., 1990); Fusarium graminearum zearale-
none (Kim et al., 2005), and aurofusarin (Malz et al., 2005);
Fusarium verticillioides fumonisin (Proctor et al., 2003).

The algorithm was able to recover all the backbone genes in
the clusters. We further evaluated the algorithm’s performance
by counting the number of over-predicted and under-predicted
genes. An over-predicted gene is defined here as a gene detected
by SMURF, but not by the previous annotations, and an under-
predicted gene as the opposite. Assuming previous annotations
are correct, over- and under-predictions correspond to false-posi-
tive and false-negative calls, respectively (Supplementary Ta-
ble 3). Note that it is possible for SMURF to simultaneously
over-predict some genes and under-predict other genes for the
same cluster.

Among the eight A. fumigatus clusters, we found only one pre-
dicted cluster (Pes1) that was under-predicted by SMURF. The clus-
ter was previously annotated as containing only two genes based
on expression studies (Perrin et al., 2007). SMURF omitted one of
these genes, because the intergenic distance between them was
unusually long and, simultaneously, identified six additional genes
in the cluster. The siderophore, epipolythiodioxopiperazine type
toxin (ETP), and pseurotin clusters were considerably over-pre-
dicted as compared to the experimentally annotated clusters. The
mean for over-prediction (7.0) was largely appreciably affected
by the over-prediction of these three clusters. Optimizing SMURF
to detect the three clusters decreased the accuracy for the remain-
ing A. fumigatus clusters.
Notably, the algorithm performed better for non-A. fumigatus
species with the mean for over-prediction being 3.9. This was
unexpected considering that parameter optimization was done
using only A. fumigatus clusters (Supplementary Table 3). Only
two clusters, terrequinone and asperthecin, were notably over-pre-
dicted. SMURF under-predicted four clusters (again mostly due to
unusually large intergenic distances) with a mean of �0.5 per clus-
ter. For all species, SMURF-predicted clusters are larger than those
annotated experimentally with the median number of over- and
under-predicted genes being 5.0 and 0.0 per cluster, respectively.

3.3. Uneven taxonomic distribution of backbone enzymes

Having validated SMURF, we then systematically searched the
genome sequences of 27 fungal species (24 ascomycota and three
basidiomycota; Supplementary Table 1) for the presence of puta-
tive backbone genes and clusters. As expected, the search revealed
that the numbers of backbone genes varies greatly (from 0 to 61)
from one fungal taxon to another (Fig. 1). We found no backbone
genes in two of the three unicellular species examined here: the
ascomycete yeast Saccharomyces cerevisiae and the basidiomycete
yeast Cryptococcus neoformans (though the latter species does have
one NRPS-like gene). Similarly, there is only one backbone gene
(Schwecke et al., 2006) in the genome of the third unicellular fun-
gus, the archiascomycete yeast Schizosaccharomyces pombe.

In addition to the canonical NRPS and PKS genes, we also cata-
logued NRPS-like and PKS-like enzymes, because some SM clusters
such as the fumonisin cluster in Fusarium species include backbone
enzymes with atypical domain composition (Song et al., 2004; Zal-
eta-Rivera et al., 2006). In addition, our estimate is that most fun-
gal backbone genes in public databases have incorrect gene
structures including split gene models (Fedorova, unpublished),
which also may result in atypical domain composition. Our analy-
sis shows that the numbers of NRPS-like and PKS-like genes fluctu-
ate in correlation with their counterparts, the canonical NRPS and
PKS genes (Fig. 1).

Fig. 1 also shows an expansion of backbone genes in Pezizomy-
cotina, especially in Eurotiomycetes, as compared to Basidiomyce-
tes and Sordariomycetes. However, within the Eurotiomycetes,
there are notably fewer backbone genes in the genomes of the hu-
man pathogens Coccidioides immitis and Coccidioides posadasii than
in the section Aspergillus. This difference is probably more due to
the phylogenetic distance between Coccidioides and Aspergillus
than to lifestyle differences. Among the Pezizomycota, Neurospora
crassa has a significantly reduced number of backbone genes (10),
even when compared to Fusarium oxysporum which has the second
lowest number of backbone genes in the Pezizomycota (P < 10�16,
Chi-square test). This difference is presumably attributable to the
presence of the repeat-induced point mutation (RIP) process in N.
crassa, which has dramatically reduced the rate of formation of
new gene duplications in that species (Galagan et al., 2003).

PKSs and NRPSs are found in significantly higher numbers than
DMATSs and hybrid enzymes in almost all species. We also ob-
served that the number of backbone genes in aspergilli is signifi-
cantly higher than in Sordariomycetes (P = 0.001, Wilcoxon test).
This difference is due to increases in the numbers of NRPS
(P = 7 � 10�4), PKS (P = 0.001), and DMATS (P = 0.002) enzymes in
the aspergilli, but not hybrid enzymes (P = 0.9).

3.4. Species specificity of SM clusters

The large numbers of putative SM gene clusters identified by
SMURF (Fig. 1) emphasizes the unusual diversity of the SM reper-
toires in fungal species. To what extent are these metabolites and
their biosynthetic pathways species-specific? To answer this ques-
tion, we further analyzed the genomes of the three closely related



Fig. 1. Numbers of backbone genes and SM clusters in the 27 sequenced fungal genomes we analyzed. The central columns show the numbers of backbone genes of each type
in a species. Each column contains two numbers separated by a slash; the first (in bold) is the number of backbone genes, and the second is the number of putative SM
clusters predicted by SMURF. If both numbers are identical, only one (in bold) is shown. The tree topology is based on the phylogenetic tree by Fitzpatrick and colleagues
(Fig. 2 in (Fitzpatrick et al., 2006)). Species named in red are human pathogens (some are also animals and/or plant pathogens), blue are plant pathogens, and black are non-
pathogenic fungi. Red bullets mark two internal branches on which enrichment in backbone genes occurred during evolution. In the histograms on the right, green bars show
the total numbers of SM clusters predicted by SMURF in each genome (excluding SM clusters containing only PKS-like and NRPS-like genes), and purple bars show the
numbers of SM clusters that have been characterized experimentally. PKS, polyketide synthase; DMATS, prenyltransferase; NRPS, nonribosomal peptide synthase. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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species A. fumigatus Af293, A. clavatus, and Neosartorya fischeri
(Fedorova et al., 2008; Nierman et al., 2005). For accessory genes
in each of these species, we assumed their reciprocal best BLASTP
hits to be putative orthologs. For backbone genes, we defined
orthology based on the sequence identity, alignment length, and
domain content. We then defined two SM clusters as orthologous
if at least 80% of their genes were orthologous. This approach
sometimes yielded hidden paralogs, which were excluded from
further analysis based on manual examination.

The comparative analysis (Fig. 2) shows that only five SM gene
clusters are common to all three genomes, while most other clus-
ters are species-specific and appear relatively young in evolution-
ary terms. The core set includes clusters, such as Pes1,
siderophores, and melanin biosynthesis clusters. Their orthologs
can be found in all other aspergilli and many distantly related fungi
such as Penicillium marneffei and Talaromyces stipitatus. Interest-
ingly most of the ‘‘core” clusters are involved in protection against
oxidative stress (Eisendle et al., 2003; Reeves et al., 2006; Schrettl
et al., 2004), while the species-specific clusters either have been
linked to antifungal or antibacterial compounds.

Inter-species comparison of the clusters present in the genomes
of two strains (Af293 and A1163) of A. fumigatus also confirmed the
prominent role of gene loss in the evolution of SM gene clusters.
This search showed that two putative SM clusters present in
Af293 are absent from A1163. One of them (AFUA_1G17710–
AFUA1G17740) has an orthologous cluster in A. clavatus
(ACLA_098870–ACLA_098920) as shown in Fig. 1. The other
Af293-specific cluster has no orthologs in any other species.
4. Discussion

4.1. Validations and limitations

SMURF is the first web-based tool that can systematically predict
putative backbone genes in fungal genomes with high accuracy. Cur-
rently, there are only two publicly available software programs
(Starcevic et al., 2008; Weber et al., 2009) designed to annotate
PKS, NRPS and hybrid genes and both have been tailored to bacterial
genomes. In addition to the backbone genes, SMURF can also gener-
ate rule-based sets of clusters, which can be used as a first approxi-
mation in comparative genomics and genetic studies. Notably, the
algorithm predicts clusters that can be overlooked by an expert
eye. For example, it identified eight additional clusters in A. fumiga-
tus Af293 that had not been found in previous annotations (data not
shown). Since none of these new clusters have been characterized
experimentally, more studies are needed to estimate the true accu-
racy of the algorithm at predicting novel clusters.

When it comes to predicting boundaries, SMURF tends to inflate
the number of decorating genes within a cluster by 4.0 on average.



Fig. 2. Core orthologous and species-specific SM clusters in A. fumigatus, A. clavatus
and N. fischeri. This Venn diagram shows relationships between putative SM
clusters that were identified by SMURF in these three species. Non-overlapping
areas represent the number of clusters unique to each species. Overlapping areas
represent the number of orthologous clusters shared by two or three species. The
total number of clusters is shown under the species name. The figure is not drawn
to scale.

740 N. Khaldi et al. / Fungal Genetics and Biology 47 (2010) 736–741
We chose not to adjust the d and y parameters and to err on the
side of keeping false positives, as these can later be rejected based
on experimental data or manual review. This relatively high false
positive rate can be explained by the low number of clusters avail-
able for parameter optimization. Unexpectedly, SMURF performed
better on non-A. fumigatus genomes, although only A. fumigatus
clusters were used for parameter optimization. Again this can be
related to the limited set of experimentally characterized clusters.

Since so few SM clusters have been experimentally character-
ized, we used previously described A. fumigatus SM clusters to find
SM-defining domains over-represented in decorating proteins and
to optimize parameters d and y used by the SMURF algorithm. This
approach allowed us to validate prediction made by SMURF by
comparing them to experimentally characterized clusters in other
fungal genomes. The potential limitation of this approach is that
this training set may be biased towards A. fumigatus type clusters.
As more fungal clusters become characterized, this limitation will
be addressed in future iterations of the algorithm. This can be
achieved by including new SM-defining domains, changing the
weights assigned to particular domains, or limiting the searches
to specific pathways or taxonomic groups.

Most likely additional information about clusters boundaries
will come from expression profiling, which appears to be the most
expeditious approach to defining the boundaries. Future expres-
sion studies involving putative methyltransferase LaeA (Bok
et al., 2006), the histone deacetylase HdaA (Shwab et al., 2007;
Williams et al., 2008), and other chromatin modifiers and path-
way-specific transcriptional regulators (Brakhage et al., 2008) can
also facilitate the discovery of new clusters. Not all clusters, how-
ever, can be expressed under in vitro conditions. Likewise, experi-
mental conditions can affect the number of differentially
expressed genes in a cluster as have been shown for the A. fumig-
atus gliotoxin cluster (McDonagh et al., 2008; Perrin et al., 2007).
Identification of putative ‘‘boundary” DNA motifs that get recog-
nized by transcription factors and epigenetic regulators could fur-
ther improve the algorithm accuracy. Ultimately, however, gene
knock-out experiments followed by biochemical characterization
of the enzymes are required to validate a cluster and to demarcate
its ends.

4.2. Research application

Our preliminary analysis of the putative SM clusters predicted
by SMURF in 27 fungal genomes showed that the numbers of po-
tential SMs produced by fungi appears to be much higher than pre-
viously anticipated. This apparent discrepancy between the
encoded and observed secondary metabolite repertoire can be ex-
plained by the presence of silent or ‘‘orphan” gene clusters, which
do not get expressed under common in vitro conditions. Based on
SMURF predictions, nonribosomal peptides and polyketides are
the most abundant secondary metabolites produced by fungi.
Among the taxa studied by genome sequencing, the aspergilli
and sordariomycete genomes encode the largest numbers of these
metabolites. Since over 50% of all SM compounds are estimated to
have antibacterial, antifungal, or anti-tumor activity as revealed by
a recent study (Palaez, 2005), these hidden clusters may represent
a large unexplored reservoir of natural products of medical, agri-
cultural, or industrial importance.

SM clusters are very unevenly distributed among fungal taxa
consistent with the view that they can be used as species or diag-
nostic markers at either an inter-species or an inter-strain level
(Frisvad et al., 2008). Cross-species comparison of SM clusters
shows that very few of them are shared even among very closely
related fungi (Fig. 2). This suggests that, with the exception of
the small number of conserved ‘‘core” clusters, most SM clusters
are relatively young in evolutionary terms and have been subject
to rapid gene gain and loss.

What kind of selective pressures could have created this chem-
ical diversity of fungal natural products? This has been attributed
to diversifying selection (also known as positive Darwinian selec-
tion) driven by a chemical arms race between fungi and their pre-
dators, competitors, and hosts (Magan and Aldred, 2006). Our
results show that most conserved core clusters in the aspergilli
have been linked to protection against oxidative stress (Eisendle
et al., 2003; Reeves et al., 2006; Schrettl et al., 2004). In contrast,
many lineage specific clusters are involved in biosynthesis of
mycotoxins and antimicrobial compounds (e.g. gliotoxin, aflatoxin,
penicillin). The observed lineage-specific expansions of SM genes
in aspergilli and other soil fungi may be responsible for adaptation
to the ever changing soil microbiome.

Our results indicate a correlation between the presence of SM
pathways and competence for filamentous growth form among
fungal taxa. The species phylogeny shows that numerous SM back-
bone genes were lost, on three separate occasions, on branches
leading to species with primarily unicellular growth habits.
Although the number of secondary metabolite clusters in the
ancestor of all fungi is unknown, this ancestor is thought to be a
multicellular organism (Liu and Hall, 2004). This suggests that
losses of secondary metabolism genes may have coincided with
transitions to a unicellular lifestyle during the evolution of each
of these lineages (Fig. 1). In contrast to filamentous fungi that live
in soil, the unicellular fungi analyzed here have adapted to highly
specialized niches like decaying fruit or a eukaryotic host, so they
may not need SMs as defense mechanisms. Similarly, we found
fewer backbone genes in plant pathogens than in other fungi that
have to thrive in a wide range of conditions. Finally the SM path-
ways expansions are found in aspergilli and other filamentous fun-
gi that are characterized by ubiquity, metabolic versatility and
opportunism.
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