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Evidence for a High Frequency of
Simultaneous Double-Nucleotide

Substitutions
Michalis Averof,1* Antonis Rokas,2 Kenneth H. Wolfe,3

Paul M. Sharp4*

Point mutations are generally assumed to involve changes of single nucleotides.
Nevertheless, the nature and known mechanisms of mutation do not exclude
the possibility that several adjacent nucleotides may change simultaneously in
a single mutational event. Two independent approaches are used here to
estimate the frequency of simultaneous double-nucleotide substitutions. The
first examines switches between TCN and AGY (where N is any nucleotide and
Y is a pyrimidine) codons encoding absolutely conserved serine residues in a
number of proteins from diverse organisms. The second reveals double-nucle-
otide substitutions in primate noncoding sequences. These two complementary
approaches provide similar high estimates for the rate of doublet substitutions,
on the order of 0.1 per site per billion years.

Mutational events can be studied either by di-
rect observation of mutations in the laboratory
or by comparing sequences that have been ac-
cumulating mutations naturally, during evolu-
tion. Studies of the first kind have suggested
that some mutations can involve multiple nu-
cleotide changes (1, 2), and indeed, mecha-
nisms that affect neighboring nucleotides are
known. Examples include template-directed
mutations occurring during DNA repair and

replication (1) or dipyrimidine lesions induced
by ultraviolet light (2, 3). Some evolutionary
comparisons have also suggested that simulta-
neous double-nucleotide substitutions occur at
neighboring sites (4), but the significance and
generality of these observations have been
questioned (5). Thus, changes in neighboring
nucleotides are usually attributed to coinci-
dence of independent mutations.

We used two independent and complemen-
tary approaches based on sequence compari-
sons to study double-nucleotide substitutions
and to obtain estimates of their frequency. The
first approach examined changes that have oc-
curred over long evolutionary time scales, be-
tween two particular dinucleotides, TC and AG.
Serine is unique among amino acids in that it is
encoded by two groups of codons, TCN and
AGY, which cannot be interconverted by a
single-nucleotide mutation. Switches between
these groups of codons could occur indirectly,
by two separate single-nucleotide mutations

1Institute of Molecular Biology and Biotechnology
(IMBB)–FORTH, Vassilika Vouton, 711 10 Iraklio,
Crete, Greece. 2Institute of Cell, Animal and Popula-
tion Biology, University of Edinburgh, King’s Buildings,
West Mains Road, Edinburgh, EH9 3JT, UK. 3Depart-
ment of Genetics, Trinity College, University of Dub-
lin, Dublin 2, Ireland. 4Institute of Genetics, University
of Nottingham, Queens Medical Centre, Nottingham
NG7 2UH, UK.

*To whom correspondence should be addressed. E-
mail: averof@imbb.forth.gr (M.A.) or paul@evol.nott.
ac.uk (P.M.S.)

R E P O R T S

www.sciencemag.org SCIENCE VOL 287 18 FEBRUARY 2000 1283



(TC7AC7AG or TC7TG7AG), or perhaps
directly by simultaneous double-nucleotide mu-
tation (TC7AG). In the former case, the switch
would involve an intermediate step whereby the
triplet would encode either threonine (ACN) or
cysteine (TGY), residues that are ionically and
sterically different from serine (6), so such
changes are unlikely to be tolerated in critical
functional or structural sites of a protein. Nev-
ertheless, TCN7AGY switches have been ob-
served at sites encoding extremely conserved
serine residues, for example in ubiquitin (7) and

in the active site of serine proteases (8). Switch-
es at these sites seem most likely to result
from simultaneous double-nucleotide muta-
tions, which in this context are synonymous and
most likely selectively neutral.

To investigate the generality and frequency
of such switches, we studied 23 data sets of
homologous proteins containing serine residues
absolutely conserved over a wide range of eu-
karyotes and/or prokaryotes (Fig. 1A). We an-
alyzed the distribution of TCN and AGY codon
types in these conserved serines, inferring the

position and frequency of codon switches dur-
ing evolution (illustrated in Fig. 1B) (9). Our
analysis reveals a widespread occurrence of
codon switches at such sites (Table 1), with an
estimated frequency of about 0.1 per site per
billion years (94/774 5 0.12 per site per Gyr).
This rate appears to be consistent among differ-
ent phylogenetic lineages and different genes
(Fig. 2). Rate estimates from bacteria and eu-
karyotes are very similar, 0.11 and 0.12 per site
per billion years (Gyr), respectively.

Of the 70 switches where the direction of
change could be inferred (by parsimony and
with reference to outgroups), 60 were in the
TC3AG rather than the AG3TC direction.
However, independent rate estimates for each
direction are very similar, 0.10 and 0.11 per site
per Gyr, respectively. The bias therefore re-
flects a preponderance of TCN-type codons as
potential targets, rather than a bias in the direc-
tion of mutation [this points to a strong codon
bias in the ancestral representation of serines
(10)].

Most codon switches at such highly con-
served serines appear to result from simulta-
neous double-nucleotide mutations. However,

Table 1. Rates of serine codon switches in 23 data sets of highly conserved proteins. The phylogenetic
assemblages (species) represented in each data set are indicated by numbers as specified in Fig. 1A. The
inferred number of codon switches and estimated time sampled by each data set (in Gyr) are indicated.

Protein Species Switches Time

Ribosomal protein S7 1,3,4,5,8,9 1 5.51
Ribosomal protein S11 1,3,5,8,9,13,14 2 22.62
Ribosomal protein S12 1,3,5,7,9,16 1 6.36
Ribosomal protein S17 1,2,5,9,10,13,15 0 15.49
Arginosuccinate synthetase 1,9,18,24 3 18.12
Glycine dehydrogenase 1,2,8,9,13 3 28.20
Glutamine fructose-6-phosphate

transaminase
1,8,9,17,18,19,20,22,23,24 4 44.13

2-oxaloglutarate dehydrogenase 1,9,23,24 5 32.35
Asparagine synthase 1,9,13 2 38.08
Adenylosuccinate synthase 1,7,8,9,13,15,19,20,22,23,24 2 17.11
dUTP pyrophosphatase 1,9,13,24 0 5.71
Uridine-5-diphosphate

glucose-4-epimerase
1,9,18,19,22,23,24 5 32.32

Phosphoenol pyruvate
carboxykinase

1,2,5,7,11 7 55.40

Arginosuccinate lyase 1,2,3,8,9,14,18,21,24 9 63.05
1,4-a-glycan branching enzyme 1,9,13,18,19,20,24 6 28.92
Histidine tRNA synthetase 1,4,7,9 2 16.08
Tryptophanyl tRNA synthetase 1,8,9 2 9.38
Ribonucleotide reductase (large

subunit)
1,5,7,8,9,12 16 123.80

Fumarate hydratase 1,9,11 3 21.06
Aspartate ammonia lyase 18,19,23,24 3 46.40
DNA topoisomerase 2 1,5,8,9,13,16 5 51.60
Dimethylallyl transferase 1,9,10,13 1 18.21
Ribonucleotide reductase (small

subunit)
1,5,6,7,8,9,12,13,15 12 74.10

Total 94 774.00

Fig. 1. (A) Overview of
the phylogeny and diver-
gence times used for the
analysis of serine codon
switches. The phylogeny
is based on a number of
recent phylogenetic anal-
yses (20, 24), with points
of uncertainty shown as
unresolved polychoto-
mies. Times of common
ancestors are indicated in
Gyr before present. (B)
Determination of serine
codon switches. The data
set of glutamine fructose-
6-phosphate transaminase
is shown as an example.
There are three sites
where serine is absolute-
ly conserved in the pro-
tein sequence (alignment sites 780, 953, and 990). At least four codon switches can be observed. The time sampled by this data set (sum of branch
lengths) is 3 3 14.71 Gyr.

Fig. 2. Rate of observed serine codon switches
for 23 proteins. Data is from Table 1. The line
has a slope of 0.12 switches per site per Gyr.
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it is conceivable that these switches could occur
by two separate single-nucleotide mutations,
through intermediates that encode threonine or
cysteine. Kimura suggested that slightly delete-
rious intermediates may sometimes survive to
be rescued by rapidly selected compensatory
mutations (11), but there are a number of ob-
servations that argue against this possibility in
this case. First, Kimura’s model applies to sit-
uations where compensatory mutations are rel-
atively frequent (e.g., when many different mu-
tations can have a compensatory effect) or
when the selective coefficient against the inter-
mediates is rather low, which seem very unlike-
ly. Second, if deleterious alleles were involved,
we would expect these to survive much more
frequently in the presence of additional copies
of the gene, but we observe very similar rates of
codon switches in haploid and diploid genomes,
as well as in proteins that belong to multigene
families (12). Moreover, we have also noticed
TCN7AGY switches among codons encoding
highly conserved serines in closely related se-
quences, with no evidence of a transition
through nonserine intermediates (13).

Other mechanisms have also been proposed
that could explain switches in serine codons
through nondeleterious intermediates (8, 14–
16). For example, a transient substitution of
serine by another amino acid could be comple-
mented by the presence of a neighboring serine
residue (16), an alternative genetic code may

have allowed TGN to encode serine (15), or the
two types of serine codon may reflect indepen-
dent origins from a different ancestral amino
acid (8). These explanations may apply in spe-
cial cases and could contribute to a small pro-
portion of codon switches. However, they are
unlikely to account for the widespread distribu-
tion of codon switches, as observed in diverse
phylogenetic lineages, in different proteins, and
in serine residues whose position and identity
has been absolutely conserved.

In our second approach, we examined dou-
ble-nucleotide substitutions among noncoding
sequences of closely related species. In these
sequences, substitutions are expected to accu-
mulate in a manner that is unbiased by selec-
tion, and so directly reflect mutational process-
es. We compared a long (about 7 kb) noncoding
sequence from the pseudo eta globin locus of
seven closely related catarrhine primates (Fig.
3) (17) to determine whether mutations in that
region involve a significant fraction of clustered
nucleotide changes (18). Using parsimony anal-
ysis, we determined the number of single- and
double-nucleotide changes that have occurred
during the evolution of these species and found
a significant excess of double-nucleotide sub-
stitutions relative to what would be expected by
coincidence of single-nucleotide changes alone
(Table 2). The excess, apparently simultaneous,
dinucleotide mutations are estimated to have
occurred at a rate of 0.1 per site per Gyr (19), on
average, at any nucleotide doublet.

These two analyses are complementary:
they examine double-nucleotide substitutions in
different contexts and over very different time
scales. Any concerns that the serine codon
switches might have involved compensatory
changes via nonserine intermediates are offset
by the observation of similarly high levels of
doublet changes in closely related noncoding
sequences. Equally, although the rates for all
dinucleotide changes were estimated from just
one particular region of the primate genome,
the rates of TC7AG changes estimated from

serine switches apply to a wide range of loci
from diverse organisms. Both approaches point
to the conclusion that the rate of double-nucle-
otide substitutions is high compared to expec-
tations based on the coincidence of individual
neutral nucleotide substitutions, which typically
occur at a rate of around 1 to 10 per site per Gyr
(20, 21).

We expect that the rates of different doublet
mutations will vary considerably depending on
a cell’s exposure to different mutational mech-
anisms. For example, we would expect to see a
much higher incidence of dipyrimidine lesions
in cells that are exposed to ultraviolet light (e.g.,
exposed unicellular organisms, skin cells) than
in cells that are not (e.g., the germ line of large
multicellular animals). Such differences might
explain why the estimated frequency of specific
TC3AG and AG3TC substitutions in serine
codons, which may involve dipyrimidines (TC
in the coding strand or CT in the noncoding
strand, respectively), is higher than would be
predicted by the average frequency of double-
nucleotide substitution estimated from the eta
globin pseudogene. The sequence-specificity of
mutational mechanisms could result in different
rates of substitution among various doublets in
different cell types. These observations may
be important in the context of models of
molecular evolution and phylogenetic recon-
struction, as well as mutational mechanisms of
human disease.
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